指数函数的求导是怎么回事?

人力资源管理师2022-06-19 04:47:22admin2

指数函数的求导公式:(a^x)'=(lna)(a^x)部分导数公式:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x;y'=a^xlna;y=e^x y'=e^x4.y=logax y'=logae/x;y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2扩展资料求导证明:y=a^x两边同时取对数,得:lny=xlna两边同时对x求导数,得:y'/y=lna所以y'=ylna=a^xlna,得证注意事项1.不是所有的函数都可以求导;2.可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

对数函数的导数公式?

对数函数求导:(Inx)'=1/x(ln为自然对数),(logax)'=x^(-1)/lna(a>0且a不等于1)。

对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。其是六类基本初等函数之一。

如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)就叫做对数函数,其中“log”是拉丁文logarithm(对数)的缩写。

扩展资料对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

相关推荐

猜你喜欢

大家正在看

换一换