指数函数的n阶导数公式

人力资源管理师2022-06-19 05:20:04admin2

^^e^x的n阶导数就是e^x.
e^(kx)的n阶导数是k^n e^x.
a^x的n阶导数是(ln a)^n a^x, 可用换底公式计算, 即a^x=e^(x ln a).
e^(f(x))的导数用复合函数求导法.
f(x)e^x的导数用Leibniz法则.

指数函数和对数函数的导数的推导

lim(h->0)[e^(x+h)-e^x]/h
=lim(h->0)e^x[e^(h)-1]/h
=lim(h->0)e^x*h/h
=e^x
如果是a^x
a^x=e^xlna,同理可证;

lim(h->0)[log(a,x+h)-log(a,x)]/h
=lim(h->0)[log(a,1+h/x)]/h
=lim(h->0)[log(a,(1+h/x)^(1/h))]
=[log(a,e^(1/x))]
=1/x*log(a,e)
=1/(xlna)

求指数函数导数的求证过程

y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^x y'=e^x。

相关推荐

猜你喜欢

大家正在看

换一换